柴继杰

时间:2024-01-15 13:28:59编辑:小周

柴继杰的个人简介

柴继杰实验室关注并研究在生物学及药学应用中的重要大分子的结构与功能。主要通过蛋白晶体衍射的方法及一些生物、生化方面的手段阐述这些生物大分子在结构和功能上的联系。我们并不局限于已建立的研究框架,拟与北京生命科学研究所的其他研究小组合作,在今后的工作中开展一些联合研究项目。2018年1月8日,柴继杰的植物油菜素内酯等受体激酶的结构及功能研究项目获得2017年度国家自然科学奖二等奖。

教育经历

清华大学生命科学学院教授 博士生导师

1987大连轻工业学院化学工程系学士

1997中国协和医科大学药物分析学博士

工作经历

(1983-1999)

1983.09-1987.07 大连轻工业学院 学士

1987.09-1991.09 丹东鸭绿江造纸厂 助理工程师

1991.09-1994.07 石油化工科学研究院 硕士

1994.09-1997.07 协和医科大学、药物研究所 博士

1997.09-1999.08 中科院生物物理研究所 博士后

1999.09-2004.07 普林斯顿大学 博士后

(2004-2009)

2004.07-2009.03 北京生命科学研究所 研究员

2009.03-至今 清华大学生命科学学院 教授

科研方面

研究概述:

柴继杰实验室关注并研究在生物学及药学应用中的重要大分子的结构与功能。主要通过蛋白晶体衍射的方法及一些生物、生化方面的手段阐述这些生物大分子在结构和功能上的联系。我们并不局限于已建立的研究框架,拟与北京生命科学研究所的其他研究小组合作,在今后的工作中开展一些联合研究项目。

研究方向

一个正进行的研究方向将关注专职吞噬细胞(professional phagocytes)对调亡细胞的识别途径。近十年来大量的工作已对调亡调控的机制做了详尽的研究。相对的,在细胞调亡后如何去除调亡的细胞残体的问题并没得到关注。(此问题并不是不重要)如果在此环节出现问题将造成炎症反应的异常持续和自身免疫的出现。在吞噬细胞消除调亡的细胞体的过程中,第一步反应是调亡的细胞体和处于调亡过程中的细胞表面出现如磷脂酰丝氨酸(PS)等可被各种吞噬细胞上的受体识别的发出“eat-me”信号的信号分子。近年来的研究发现这一识别过程并不仅仅是此类信号分子与吞噬细胞受体的简单结合。实际上,一类可被其他吞噬细胞的受体识别的桥联分子(bridging molecule)如Annexin I(Anx I)也参与了识别过程。除此,我们还将对“donu2019t-eat-me”信号的识别机制及溶血磷脂酰胆碱(LPC)等。

研究目标

"find-me"信号的产生和调控机制进行研究。前者存于正常细胞,保证这些非调亡的细胞不被错误吞噬;后者为调亡细胞所产生,是本实验室的另一个研究目标是吞噬细胞识别和吞噬调亡细胞的信号调控的分子机制。前人在线虫(C. elegans)的遗传学筛选工作中发现七个基因产物分别隶属于两条功能上冗余的信号转导系统参与了清除调亡细胞体过程。其中一条信号系统为CED-2/ced-5/CED-12/CED10,这条信号系统保守的存于哺乳类中,其同源信号系统为CrkII/Dock180/ELMO/RAC,我门将从蛋白三维结构的尺度研究这条信号系统的活化和调控机制。

发表文章

Zhiwei Huang, Sarah E. Sutton, Adam J. Wallenfang, Robert C. Orchard, Xiaojing Wu, Yingcai Feng, Jijie Chai*, and Neal M. Alto*. Structural insights into GEF mimicry and host GTPase isoform selection by two bacterial type III effector families (*Co-corresponding authors). Nat. Struct. Mol & Biol., 2009 (in press). Jing Dong, Fangming Xiao, Fenxia Fan, Lichuan Gu, Huaixing Cang, Gregory B. Martin* and Jijie Chai*. Crystal structure of the complex between Pseudomonas effector AvrPtoB and the Pto tomato kinase reveals it has both a shared and a unique interface compared with AvrPto-Pto (*Co-corresponding authors), Plant Cell, 2009 (in press).

Structural basis for activation and inhibition of the secreted chlamydia protease CPAF. Cell Host & Microbe. 2008,4(6), 529-546. Zhiwei Huang, Yingcai Feng, Ding Chen, Xiaojing Wu, Siyang Huang, Xiaojun Wang, Xingguo Xiao, Wenhui Li, Niu Huang, Lichuan Gu, Guangming Zhong and Jijie Chai.

Maikke B. Ohlson, Zhiwei Huang, Neal M. Alto, Marie-Pierre Blanc, Jack E. Dixon, Chai J.*, and Samuel I. Miller*. Structure and function of SifA indicate that interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tabulation (*Co-corresponding authors). Cell Host & Microbe. 2008, 4(5):434-46.

Zhou JM, Chai J. Plant pathogenic bacterial type III effectors subdue host responses. Curr Opin Microbiol. 2008 Apr; 11(2):179-85.

Xiang T, Zong N, Zou Y, Wu Y, Zhang J, Xing W, Li Y, Tang X, Zhu L, Chai J, Zhou JM. Pseudomonas syringae Effector AvrPto Blocks Innate Immunity by Targeting Receptor Kinases. Curr Biol. 2008 Jan 8; 18(1):74-80.

Chen L, Wang H, Zhang J, Gu L, Huang N, Zhou JM, Chai J. Structural basis for the catalytic mechanism of phosphothreonine lyase. Nat Struct Mol Biol. Nat Struct Mol Biol. 2008 Jan; 15(1):101-2.

Han Z, Xing X, Hu M, Zhang Y, Liu P, Chai J.Structural basis of EZH2 recognition by EED. Structure. 2007 Oct; 15(10):1306-15.

Xing W, Zou Y, Liu Q, Liu J, Luo X, Huang Q, Chen S, Zhu L, Bi R, Hao Q, Wu JW, Zhou JM, Chai J. The structural basis for activation of plant immunity by bacterial effector protein AvrPto. Nature. 2007 Sep 13; 449(7159):243-7.

Zhang J, Shao F, Li Y, Cui H, Chen L, Li H, Zou Y, Long C, Lan L, Chai J, Chen S, Tang X, Zhou JM. Cell Host & Microbe. 2007 May 17, 1(3):175-85.

Wang H, Yan Y, Liu L, Huang H, Shen Y, Chen L, Chen Y, Yang Q, Hao Q, Wang K, Chai J, Structural Basis for Modulation of Kv4 K+ Channels by Auxiliary KChIP Subunits. Nature Neuroscience, 2007 Jan; 10(1):32-9.

Zhang T, Sun Y, Tian E, Deng H, Zhang Y, Luo X, Cai Q, Wang H, Chai J, Zhang H. RNA-binding proteins SOP-2 and SOR-1 form a novel PcG-like complex in C. elegans. Development. 2006 Mar; 133(6):1023-33.

Han Z, Guo L, Wang H, Shen Y, Deng XW, Chai J. Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5. Mol. Cell 2006, 22(1):137-44.

Yan N, Wu JW, Chai J, Li W, Shi Y. Molecular mechanisms of DrICE inhibition by DIAP1 and removal of inhibition by Reaper, Hid and Grim. “Nat Struct Mol Biol. 2004 May;11(5):420-8. Epub 2004 Apr 25.”

Yan N, Chai J, Lee ES, Gu L, Liu Q, He J, Wu J-W, Kokel D, Li H, Hao Q, Xue .D, and Shi Y. Structure of the CED-4/CED-9 complex reveals insights into programmed cell death in Caenorhabditis elegans. Nature, 2005 Oct 6; 437(7060):831-7.

Chai J*, Yan N*, Huh JR, Wu JW, Li W, Hay BA, Shi Y. “Molecular mechanism of Reaper-Grim-Hid-mediated suppression of DIAP1-dependent Dronc ubiquitination.” Nat Struct Biol. 2003 Nov; 10(11):892-8. (* These authors contributed equally to the work ).

Yan N, Gu L, Kokel D, Chai J, Li W, Han A, Chen L, Xue D, Shi Y. Structural, biochemical, and functional analyses of CED-9 recognition by the proapoptotic proteins EGL-1 and CED-4. Mol Cell. 2004 15(6):999-1006.

Yan N, Wu JW, Chai J, Li W, Shi Y. Molecular mechanisms of DrICE inhibition by DIAP1 and removal of inhibition by Reaper, Hid and Grim. Nat Struct Mol Biol. 2004, 11(5):420-8.

Chai J, Wu JW, Yan N, Massagué J, Pavletich NP, Shi Y. Features of a Smad3 MH1-DNA complex. Roles of water and zinc in DNA binding. J Biol Chem. 2003, 278(22):20327-3.

Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ, Li P, Srinivasula SM, Alnemri ES, Fairman R, Shi Y. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell. 2003, 11(2):519.

Wang X, Yang C, Chai J, Shi Y, Xue D. Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans. Science. 2002 Nov 22; 298(5598):1587-92.

Wu JW, Krawitz AR, Chai J, Li W, Zhang F, Luo K, Shi Y. Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski: insights on Ski-mediated repression of TGF-beta signaling. Cell. 2002, 111(3):357-67.

Li W, Srinivasula SM, Chai J, Li P, Wu JW, Zhang Z, Alnemri ES, Shi Y. Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. Nat Struct Biol. 2002, 9(6):436.

Shiozaki EN, Chai J, Shi Y. Oligomerization and activation of caspase-9, induced by Apaf-1 CARD. Proc Natl Acad Sci U S A. 2002, 99(7):4197-202.

Wu JW, Hu M, Chai J, Seoane J, Huse M, Li C, Rigotti DJ, Kyin S, Muir TW, Fairman R, Massagué J, Shi Y. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Mol Cell. 2001, 8(6):1277

Chai J, Wu Q, Shiozaki E, Srinivasula SM, Alnemri ES, Shi Y. “Crystal structure of a procaspase-7 zymogen: mechanisms of activation and substrate binding,” Cell 2001 Nov 2;107(3):399-407.

Wu JW, Cocina AE, Chai J, Hay BA, Shi Y. Structural analysis of a functional DIAP1 fragment bound to grim and hid peptides. Mol Cell. 2001, 8(1):95

Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, Chai J, Lee RA, Robbins PD, Fernandes-Alnemri T, Shi Y, Alnemri ES. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature. 2001 Mar 1; 410(6824):112-6.

Chai J, Shiozaki E, Srinivasula SM, Wu Q, Datta P, Alnemri ES, Shi Y. Structural basis of caspase-7 inhibition by XIAP. Cell. 2001 Mar 9; 104(5):769-80.

Wu G*, Chai J*, Suber TL, Wu JW, Du C, Wang X, Shi Y. “Structural basis of IAP recognition by Smac/DIABLO,” Nature 2000 Dec 21-28; 408 (*These authors contributed equally to the work ).

Chai J , Du C, Wu JW, Kyin S, Wang X, Shi Y. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature. 2000 Aug 24; 406(6798):855-62.

荣誉记录

2018年1月8日,柴继杰的植物油菜素内酯等受体激酶的结构及功能研究项目获得2017年度国家自然科学奖二等奖。

上一篇:多布罗斯拉夫·丘拉菲奇

下一篇:丁锡三